Proton movement and coupling in the POT family of peptide transporters
نویسندگان
چکیده
POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate.
منابع مشابه
Alternating access mechanism in the POT family of oligopeptide transporters
Short chain peptides are actively transported across membranes as an efficient route for dietary protein absorption and for maintaining cellular homeostasis. In mammals, peptide transport occurs via PepT1 and PepT2, which belong to the proton-dependent oligopeptide transporter, or POT family. The recent crystal structure of a bacterial POT transporter confirmed that they belong to the major fac...
متن کاملThermodynamic evidence for a dual transport mechanism in a POT peptide transporter
Peptide transport plays an important role in cellular homeostasis as a key route for nitrogen acquisition in mammalian cells. PepT1 and PepT2, the mammalian proton coupled peptide transporters (POTs), function to assimilate and retain diet-derived peptides and play important roles in drug pharmacokinetics. A key characteristic of the POT family is the mechanism of peptide selectivity, with memb...
متن کاملSymmetry and Structure in the POT Family of Proton Coupled Peptide Transporters
The POT family of proton coupled oligopeptide transporters belong to the Major Facilitator Superfamily of secondary active transporters and are found widely distributed in bacterial, plant, fungal and animal genomes. POT transporters use the inwardly directed proton electrochemical gradient to drive the concentrative uptake of diand tri-peptides across the cell membrane for metabolic assimilati...
متن کاملCrystal structure of the E. coli peptide transporter YbgH.
E. coli YbgH belongs to the family of proton-dependent oligopeptide transporters (POTs), a subfamily of the major facilitator superfamily (MFS) of secondary active transporters. Like other MFS transporters, POT proteins switch between two major conformations during substrate transport. Apart from possessing a canonical 12-helix, two-domain transmembrane (TM) core, prokaryotic POT proteins usual...
متن کاملA POTluck of peptide transporters.
The uptake of diet-derived peptides is mediated by the conserved proton-dependent oligopeptide transporter (POT) family. Crystal structures of bacterial transporters in the inward-open conformation and in an occluded conformation published in The EMBO Journal provide structural insight into the proton-driven peptide transport cycle. Lipid bilayers are generally not permeable to amino acids, pep...
متن کامل